J. Sydnor ${ }^{1}$ and S. Burke-Spolaor ${ }^{1}$

We are building BOBcat:

BOBcat: A Catalog of Binary Black Hole Candidates We are developing BOBcat: "Black holes Orbiting Black holes catalog" that will be a searchable, public-use database of SMBHB candidates. The catalog will include a fully-referenced, comprehensive database of candidate SMBHBs published in the literature, including relevant queryable information such as location, redshift, proposed binary signature, proposed binary models, and any limitations on the binary orbital parameters (chirp mass, mass ratio, frequency, orientation parameters). The database will also contain relevant targeted PTA limits. Similar catalogs currently available
include PSRcat FRBcat, Open Supernova Catalog, etc. BOBcat will thus serve as a include PSRcat, FRBcal, Open Supernova Catalog, etc. BOBcat will thus serve as a
centrailzing reference point for pertinent information about SMBHB candidates in the literature. We intend that it may serve two communities: GW searchers/modellers (LISA and PTAs), and electromagnetic black-hole hunters
We have created a SQL-based database
nd continue to make adjustments within the structure as we obtain comments from the, structure as we obtain comments from
the community. Additional python based coding will allow easy ingestion of candidates and manipulation of information. A Django framework is being created to develop a webpage and search process focused on easy user interface.

BOBcat: Current Status

 As we build the framework andnecessary structure we continue to collect
candidates. BOBcat (offline) contains ~ 300
SMBHB candidates. PTAs are fast
approaching upper error ranges of several
candidates predicted gravitational wave
strain, while also probing the frequency
space these candidates are expected to be
seen in as shown in the plots to the right. In
the future a full IPTA+SKA could probe
many targets that are already known as
indicated by the predicted sensitivity curve
in the bottom plot at the right.
While we are aiming to organize BOBcat,
we also aim for it to be a tool for the
multise
welcomessenger community. Thus, we collaborators, or simply a list of
wequests for features you'd like to see included

Example Use-Case: Targeted Search Multi-messenger science aids targeted searches which can gain up to an order of derived priors for a targiromagnetically derived priors for a targeted continuous 4.3 improvement in the upp to a factor of mass for 3 C 66 B than that searches as seen in the plot to in "blind - This Work M Mpper Limit BOBcat allows easy access the right ${ }^{8}$.
 parameters for such access to binary therefore making targeted searches easy.

References:

Yardley et al. 2020 MNRAS 40766 Aggarwal et al. 2019 ApJ 880116. https://sci.esa.int/s/w5ayMBw

